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Abstract

We consider a receding horizon approach as an approximate solution to two-person zero-sum

Markov games with infinite horizon discounted cost and average cost criteria. We first present

error bounds from the optimal equilibrium value of the game when both players take correlated

equilibrium receding horizon policies that are based on exact or approximate solutions of receding

finite horizon subgames. Motivated by the worst-case optimal control of queueing systems by

Altman [1], we then analyze error bounds when the minimizer plays the (approximate) receding

horizon control and the maximizer plays the worst case policy. We give three heuristic examples

of the approximate receding horizon control. We extend “rollout” by Bertsekas and Castanon [9]

and “parallel rollout” and “hindsight optimization” by Chang et al. [13, 16] into the Markov

game setting within the framework of the approximate receding horizon approach and analyze

their performances. From the rollout/parallel rollout approaches, the minimizing player seeks

to improve the performance of a single heuristic policy it rolls out or to combine dynamically

multiple heuristic policies in a set to improve the performances of all of the heuristic policies

simultaneously under the guess that the maximizing player has chosen a fixed worst-case policy.

Given ε > 0, we give the value of the receding horizon which guarantees that the parallel rollout

policy with the horizon played by the minimizer dominates any heuristic policy in the set by

ε. From the hindsight optimization approach, the minimizing player makes a decision based on

his expected optimal hindsight performance over a finite horizon. We finally discuss practical

implementations of the receding horizon approaches via simulation.

Keywords: Markov game, receding horizon control, infinite horizon cost, rollout, hindsight opti-

mization
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1 Introduction

Game Theory has been used to model dynamic sequential decision making problems in a wide

variety of situations where multiple decision makers compete or cooperate to optimize their cost

functionals. In this paper, we consider games with two players where one player (the minimizer)

wishes to minimize his cost that will be paid to the other player (the maximizer). Both players

take underlying decisions simultaneously at each state, with the complete knowledge of the state

of the system but without knowing each other’s current action being taken. We can view the

maximizer as nature which controls the disturbances that are unknown to the minimizer [39]. The

minimizer then tries to get the best performance under the worst possible dynamic choice of the

unknown disturbance parameters controlled by nature. That is, the minimizer seeks to design a

robust controller that works well under the worst case scenario [6]. This gives rise to two-person

zero-sum Markov games.

Recently, Markov games have received an attention in the queueing system literature in order

to solve interesting telecommunication network problems, for example, admission control, routing,

flow control, etc. (see, e.g., Altman’s paper [1] and the references therein and [24]). However, even

though the worst-case scenario1 that will be played by the maximizer can be analyzed for some

problems, it is often quite difficult to obtain such a policy exactly. In that case, the natural step

for the minimizer is to “guess” the seemingly worst possible play of the maximizer and then try to

optimize his performance. If the minimizer assumes that the maximizer will play a fixed policy, to

the minimizer the problem becomes solving a Markov decision process (MDP) [42]. It is well-known

that solving MDPs in general (for infinite horizon cost) is often impractical if the state space is

large even though exact solution techniques are available, e.g., value iteration or policy iteration,

etc. (see, e.g., [42] for a substantial discussion). This means that even with the minimizer’s guess

on the opponent’s play, getting the best performance for him is difficult.

With this motivation, we focus on solving two-person zero-sum Markov games with infinite

horizon discounted cost and infinite horizon average cost criteria via an approximation framework

in the context of “planning”. We adopt a receding horizon control approach. The idea is to obtain

an optimal solution with respect to a “small” moving horizon at each decision time and apply the

solution to the system. In fact, this approach has been studied in several contexts in various fields,

e.g., planning in economics [27], model predictive control literature [29, 34, 35], and planning in

MDPs [23, 13], etc. In the game setting, Baglietto et al. [5] applied team theory [25] empirically with

a receding horizon control to solve a routing problem in a communication network by formulating

the problem as a nonlinear optimal control problem, and Van den Broek [12] considered a receding

horizon control in non-zero sum differential games [12], specifically analyzing the performance of
1What we mean by the worst case scenario is the case when the maximizer plays his optimal equilibrium policy

that we define later.
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linear quadratic games. The receding horizon control he employed is somewhat different from what

we do here. In his case, at any decision time, the players base their actions on a finite horizon but

at each decision time, the horizon size increases. This paper focuses on a fixed receding horizon

size.

At each state, the minimizing player selects a small but typical horizon and solves the given

Markov game with the finite horizon (called the subgame) under the guess that the maximizing

player makes his decision based on his best performance for the subgame. The minimizing player

then takes a randomized action based on the solution to the subgame. The intuition is that if the

horizon is “long” enough to get a stationary behavior of the game, this moving horizon control

would have a good performance. Indeed, we first show that the value of the game played by the

receding horizon control from both players converges geometrically fast, with given discount factor

in (0,1) for infinite horizon discounted cost and with given “ergodicity coefficient” in (0,1) for infinite

horizon average cost, to the optimal equilibrium value of the game, uniformly in the initial state, as

the value of the moving horizon increases (Hernández-Lerma and Lasserre [23] obtained a similar

result for MDPs [23]). We mention here that this error analysis assumes that the maximizing

player also plays his respective half of a common copy of the approach, resulting in a so-called

correlated equilibrium. In other words, the maximizer also plays the receding horizon control like

the minimizer. We then present an error bound between the optimal equilibrium value and the

value of the game in which the minimizer plays the receding horizon control and the maximizer

plays the worst case scenario (playing the equilibrium policy), which also vanishes to zero as the

size of the receding horizon goes to infinity. This also answers an important question that arises in

the Markov game literature: what size of the planning horizon should the minimizer use to achieve

a good approximate value of the equilibrium value?

However, as we mentioned before, solving the finite horizon Markov game or subgame is also

troublesome if the state space is large. So we consider an approximate receding horizon control.

Rather than solving the finite horizon subgames exactly at each decision time, at each state, the

minimizer will make his decision based on the approximate solution for the subgame. We also

analyze the performance of this approach as previously done for the receding horizon control in

MDP contexts [15].

We then shift our attention to some examples of the approximate receding horizon control

for the minimizer. These are all heuristics where the minimizer guesses the maximizer’s worst

case scenario and approximates the solution of the subgame and takes a decision based on this

approximate solution, and all of these heuristics can be implemented via a simple Monte-Carlo

simulation. The first two approaches that will be taken by the minimizer aim at improving a

given heuristic policy (or a set of multiple heuristic policies) that is available to the minimizer,

based on policy improvement arguments. We first consider an adaptation of the rollout approach

by Bertsekas and Castanon [9] into the Markov game setting. In this approach, the minimizer
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guesses the maximizer’s worst possible play and uses a single heuristic policy to rollout to generate

a new policy whose performance in terms of the value of the game will be no worse than the given

heuristic policy if the maximizer indeed plays the policy the minimizer guessed. To the minimizer,

it will be often true that he has more than one heuristic policy available such that a particular

heuristic policy’s performance is near-otimal for the particular sample paths of the system. He may

well try to combine these policies dynamically. The next approach, called parallel rollout [13], is a

generalization of the rollout approach. It also appeals to the policy improvement principle and can

show that for any fixed policy taken by the maximizer, the minimizer will improve the performances

of all heuristic policies simultaneously if the minimizer plays the parallel rollout with respect to the

fixed policy of the maximizer. In other words, the parallel rollout is a formal method of generating

a policy that dominates all heuristic policies available. Based on the analysis of the approximate

receding horizon control we will present in this paper, we can say that if the minimizer’s guess on

the opponent’s play is good and the resulting approximate value of the subgame is also good, the

two approaches will yield a reasonable performance to the minimizer. Furthermore, given ε > 0, we

provide the value of the receding horizon which guarantees that for any fixed policy played by the

maximizer, the parallel rollout policy with the finite horizon played by the minimizer with respect

to the fixed policy of the maximizer yields a value of the game no larger than that of the game

played by any policy among heuristic policies by the minimizer and by the fixed policy chosen by

the maximizer plus ε.

The final example approach is motivated by hindsight optimization proposed in [13, 16]. By this

approach, at each state, the minimizer evaluates his candidate randomized actions based on the

analysis of the expected optimal hindsight performance over a finite horizon under the assumption

that the maximizer plays the worst-case fixed policy that chosen by the minimizer. This approach

has a flavor of heuristically adapting the hindsight optimal solutions into on-line solutions (via

on-line simulation).

This paper is organized as follows. In Section 2, we formalize mathematically the Markov

games we consider. We then introduce the (approximate) receding horizon control in Section 3

and analyze performances. We then discuss three heuristics for the approximate receding horizon

control in Section 4. In Section 5, we discuss implementation issues and other research directions.

2 Markov Game

In this section, we formulate the two-person zero-sum Markov game introduced by Shapley [44] in

a formal mathematical setting. For a substantial discussion on this topic, see, e.g., [18] [7] or [40].

Let X denote a finite state space and for x ∈ X, N(x) and M(x) denote the finite sets of actions

for the minimizing player (minimizer) and the maximizing player (maximizer), respectively. Both

players play underlying actions simultaneously at each state, with the complete knowledge of the
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state of the system but without knowing each other’s current action being taken. At each state

x, each player will consider choosing an action to take according to a probability distribution over

the available actions. For each x ∈ X, we define the players’ “admissible randomized action sets”

as G(x) and F (x) such that

G(x) = {g ∈ R|N(x)||
∑

i∈N(x)

gi = 1, and ∀i, gi ≥ 0}

F (x) = {f ∈ R|M(x)||
∑

i∈M(x)

fi = 1, and ∀i, fi ≥ 0}

Once the actions n ∈ N(x) and m ∈M(x) at state x are taken by both players, the state transitions

probabilistically to next state y according to the probability p(y|x, n,m). From this, we induce the

probability Pxy(g, f) denoting the probability of transitioning from state x to state y under the

randomized actions g ∈ G(x) and f ∈ F (x):

Pxy(g, f) =
∑

n∈N(x)

∑
m∈M(x)

gnfmp(y|x, n,m).

If the minimizer takes a randomized action g ∈ G(x) and the maximizer takes f ∈ F (x) at state x,

then the minimizer gets the expected payoff (cost) of Cx(g, f), which is given by

Cx(g, f) =
∑
y∈X

∑
n∈N(x)

∑
m∈M(x)

c(x, y, n,m)p(y|x, n,m)gnfm,

where c(x, y, n,m) is the immediate payoff to the minimizer (the negative of this will be incurred

to the maximizer) associated with a current state and the next state pair (x, y) after taking the

action n ∈ N(x) if action m is taken by the maximizer. We assume that |Cx(g, f)| ≤ Cmax <∞ for

any x, g and f . We now define a stationary policy π or strategy of the minimizer to be a function

π : X → G(X) and denote Π as the set of all possible policies, and similarly a policy φ and the set

Φ are defined for the maximizer. We will say that a stationary policy is pure, if the randomized

action selected by the policy at every state yields a non-randomized action choice, i.e., an action is

selected with probability one.

In this paper, we consider two objective function criteria: infinite horizon discounted cost

and average cost. Given a policy π selected by the minimizer and a policy φ selected by the

maximizer, we define the value of the game played with π and φ by the minimizer and the maximizer,

respectively, with a starting state x as

V∞(π, φ)(x) := E{
∞∑

t=0

γtCxt(π(xt), φ(xt))|x0 = x}

for the infinite horizon discounted cost criterion, where xt is a random variable denoting the state

at time t following the policies π and φ, and γ ∈ (0, 1) is a given discount factor. The discount

factor can be interpreted as the probability that the game will be allowed to continue after the
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current decisions made by both players. Similarly, we define the value of the game for the infinite

horizon average cost criterion as

J∞(π, φ)(x) := lim
H→∞

1
H
E{

H−1∑
t=0

Cxt(π(xt), φ(xt))|x0 = x}

with given policies π and φ.

The goal of the minimizer (the maximizer) is to find a policy π ∈ Π (φ ∈ Φ) which minimizes

(maximizes) the value of the game. Throughout this paper, V∞ always refers to the value of the

game with the infinite horizon discounted cost criterion and J∞ refers to the value of the game

with the infinite horizon average cost criterion, so that we will omit which criterion we mention at

any point if the context is clear.

2.1 Some preliminaries

2.1.1 Infinite horizon discounted cost

It is well-known (see, e.g., [40]) that there exists an optimal equilibrium policy pair π∗ ∈ Π and

φ∗ ∈ Φ such that for all π ∈ Π and φ ∈ Φ and x ∈ X,

V∞(π∗, φ)(x) ≤ V∞(π∗, φ∗)(x) ≤ V∞(π, φ∗)(x).

We will refer to the value V∞(π∗, φ∗)(x) as the equilibrium value of the game associated with state

x and to π∗ and φ∗ as the equilibrium policies for the minimizer and the maximizer, respectively.

We will write V∞(π∗, φ∗) as V ∗∞ and focus on finding or approximating the policy π∗ (note that

the content of this paper can be interpreted for the maximizer case by changing the role of the

minimizer and the maximizer). A primitive but important notion that arises in game theory is that

of dominance (see, e.g., [19]). We will say that a policy π1 ∈ Π (weakly) dominates π2 ∈ Π if and

only if for any φ ∈ Φ, V∞(π1, φ) ≤ V∞(π2, φ).

Now let B(X) be the space of real-valued bounded measurable functions on X endowed with

the supremum norm ‖V ‖ = supx |V (x)| for V ∈ B(X). We define several operators that map a

function in B(X) to a function in B(X): for all π ∈ Π, φ ∈ Φ, V ∈ B(X), and x ∈ X,

T (V )(x) = inf
g∈G(x)

sup
f∈F (x)


Cx(g, f) + γ

∑
y∈X

Pxy(g, f)V (y)




Tπ,φ(V )(x) = Cx(π(x), φ(x)) + γ
∑
y∈X

Pxy(π(x), φ(x))V (y)

Tφ(V )(x) = inf
g∈G(x)


Cx(g, φ(x)) + γ

∑
y∈X

Pxy(g, φ(x))V (y)
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Tπ(V )(x) = sup
f∈F (x)


Cx(π(x), f) + γ

∑
y∈X

Pxy(π(x), f)V (y)




It is well-known [18, 40] that each of the above operators is a contraction mapping in B(X),

that is, for the case of T , for any V1 and V2 in B(X), ‖T (V1)−T (V2)‖ ≤ γ‖V1−V2‖, and that each

operator has a monotonicity property, that is, if V1(x) ≤ V2(x) for all x ∈ X, T (V1)(x) ≤ T (V2)(x)

for all x ∈ X for the case of T . Furthermore, there exist a unique fixed point v ∈ B(X) such that

T (v) = v and v is equal to V∞(π∗, φ∗), and a unique fixed point u ∈ B(X) such that Tπ,φ(u) = u

and u = V∞(π, φ). We finally remark that for all x ∈ X, the infimum and supremum in the

definitions of the operators T , Tφ, and Tπ are achieved by elements in G(x) and F (x) (see, e.g.,

Section 3 in [38] or [40]).

Let {V ∗
n } be the sequence of value iteration functions V ∗

n := T (V ∗
n−1) where n = 1, 2, ... and

let V ∗
0 be an arbitrary function in B(X), but we assume that maxx |V ∗

0 (x)| ≤ Cmax/(1 − γ) for

a technical reason. It is straightforward to show that as n → ∞, V ∗
n converges to V∞(π∗, φ∗)

geometrically fast in γ by the contraction mapping property and the Banach fixed point theorem.

Furthermore, V ∗
n is the equilibrium value of the finite n-horizon game. We introduce a nonstationary

or time-dependent policy for the minimizer π̃ = {π0, π1, ..., } where πi ∈ Π and denote the set of

all possible nonstationary policies as Π̃ and similarly define for the maximizer. Then V ∗
n (x) is the

value of the game when starting in state x, both players play their own equilibrium nonstationary

policies for the n-horizon game with the terminal cost of V ∗
0 (see, e.g., [1, 46]) and is given by

V ∗
n (x) = inf

π̃∈Π̃
sup
φ̃∈Φ̃

E{
n−1∑
t=0

γtCxt(πt(xt), φt(xt)) + γnV ∗
0 (xn)|x0 = x}

for x ∈ X.

2.1.2 Infinite horizon average cost

Unlike the discounted cost case, it is not true that there always exists an equilibrium value for

average cost Markov games [21] in general. We make following assumption:

Assumption 2.1 The Markov chain associated with each pair of any pure policies is irreducible

and there exists ρ > 0 such that for any π ∈ Φ and φ ∈ Φ and x ∈ X,

Pxx(π(x), φ(x)) ≥ ρ.

The first assumption implies that the underlying Markov chain is a recurrent unichain and the

second assumption is the strong aperiodicity2 condition.
2This aperiodicity assumption is not a serious assumption (see, e.g., page 231 in [46]).
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Under Assumption 2.1, there exists an optimal equilibrium policy pair π∗ ∈ Π and φ∗ ∈ Φ such

that for all π ∈ Π and φ ∈ Φ and x ∈ X,

J∞(π∗, φ)(x) ≤ J∞(π∗, φ∗)(x) ≤ J∞(π, φ∗), (x).

and in fact, each term in the above inequalities is independent of the initial state x so that we can

omit x in each term above [46]. Furthermore, π∗ (φ∗) here will be a different policy in general from

the equilibrium policy for the discounted cost case. We will abuse the notation for our convenience

and what we refer to will be clear from our presentation. We will refer to the value J∞(π∗, φ∗) as

the equilibrium value of the game and to π∗ and φ∗ as the equilibrium policies for the minimizer

and the maximizer, respectively, similar to the discounted case. We will write J∞(π∗, φ∗) as J∗∞
and focus on finding or approximating the policy π∗. The dominance notion is also similarly

defined: we will say that a policy π1 ∈ Π (weakly) dominates π2 ∈ Π if and only if for any φ ∈ Φ,

J∞(π1, φ) ≤ J∞(π2, φ).

We define several operators that map a function in B(X) to a function in B(X): for all π ∈
Π, φ ∈ Φ, V ∈ B(X), and x ∈ X,

T̄ (V )(x) = inf
g∈G(x)

sup
f∈F (x)


Cx(g, f) +

∑
y∈X

Pxy(g, f)V (y)




T̄π,φ(V )(x) = Cx(π(x), φ(x)) +
∑
y∈X

Pxy(π(x), φ(x))V (y)

T̄φ(V )(x) = inf
g∈G(x)


Cx(g, φ(x)) +

∑
y∈X

Pxy(g, φ(x))V (y)




T̄π(V )(x) = sup
f∈F (x)


Cx(π(x), f) +

∑
y∈X

Pxy(π(x), f)V (y)




It is well-known (see, e.g., [18, 40, 46]) that each of the above operators has a monotonicity

property and the infimum and supremum in the definitions of the operators T̄ , T̄φ, and T̄π are

achieved by elements in G(x) and F (x).

Let {V̄ ∗
n } be the sequence of value iteration functions with respect to T̄ , V̄ ∗

n := T̄ (V̄ ∗
n−1) where

n = 1, 2, ... and V̄ ∗
0 is arbitrary function in B(X). It has been shown [46] (under Assumption 2.1

on average Markov games) that as n→∞, V̄ ∗
n converges to a function V̄ ∗∞ ∈ B(X) that satisfies

T̄ (V̄ ∗
∞)(x) = J∗∞ + V̄ ∗

∞(x) for all x ∈ X.

Furthermore, V̄ ∗
n is the equilibrium value of the finite n-horizon game without discount. In this

paper, we will assume that V̄ ∗
0 (x) = 0 for all x ∈ X.
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3 Receding Horizon Control

3.1 Infinite horizon discounted cost

As we mentioned before, solving a large-state space Markov games for infinite horizon costs is often

impractical. Therefore, we adopt a finite-horizon approximation scheme for the infinite horizon

problem. We select a small but typical horizon and solve for the Markov game with the finite

horizon (in our case, we are interested in only the optimal current or initial randomized actions for

the minimizer and the maximizer). That is, we solve the Markov game with the total discounted

cost criterion at each decision time. The intuition is that if the fixed horizon is “long” enough to get

a stationary behavior of the system, this moving horizon control would have a good performance.

Indeed, we show that the value of the game of the receding horizon control converges geometrically

to the equilibrium value, uniformly in the initial state, as the value of the moving horizon increases.

The receding horizon control is simply defined as follows. Given a finite horizon H ≥ 1, we

define the receding H-horizon control as a policy π∗H ∈ Π for the minimizer and a policy φ∗H ∈ Φ

for the maximizer such that Tπ∗H ,φ∗H (V ∗
H−1)(x) = T (V ∗

H−1)(x) for all x ∈ X. Note that the receding

H-horizon control policy is a stationary policy. We have the following bound on the performance

error.

Theorem 3.1 For all x ∈ X,

|V ∗
∞(x)− V∞(π∗H , φ

∗
H)(x)| ≤ γH(2− γ)

(1− γ)2
· 2Cmax

Proof: See the proof of Theorem 3.6 below with ε = 0 and n = H − 1.

We remark that the same result can be obtained alternatively from Lemma 4.3.5 in page 181

in [18] via a simple algebraic manipulation.

From the theorem above, we can see that the receding horizon control gives a good approxi-

mation for the infinite horizon equilibrium policy for each player, and the value of the game using

these policies approaches to the equilibrium performance for the infinite horizon cost geometrically

in γ. Furthermore, by letting γH(2−γ)
(1−γ)2 ·2Cmax = ε, we can obtain the necessary value of the planning

horizon which guarantees that the performance of the receding horizon control will be within ε of

the equilibrium value.

The minimizer will play the game by the receding horizon control based on correlated equilib-

rium. That is, he assumes that the maximizer also plays the common copy of the receding horizon

control. We need to analyze the error bound when the maximizer’s play is the true worst case

scenario, φ∗. We begin with a lemma regarding the monotonicity property of the Tπ,φ-operator.
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Lemma 3.1 For any π ∈ Π and φ ∈ Φ, suppose there exists ψ ∈ B(X) for which Tπ,φ(ψ)(x) ≤ ψ(x)

for all x ∈ X; then V∞(π, φ)(x) ≤ ψ(x) for all x ∈ X.

The above lemma can be easily proven by the monotonicity property of the operator Tπ,φ and the

convergence to the unique fixed point of V∞(π, φ) from successive applications of the operator. The

next lemma states that the function V ∗
n is non-increasing in n under a suitable initial condition and

is a simplified version of Lemma 3.1 in [45] in our context. We provide the proof for completeness.

Lemma 3.2 Suppose V ∗
0 is selected such that T (V ∗

0 )(x) ≤ V ∗
0 (x) for all x ∈ X. Then, for H =

1, 2, ..., and for all x ∈ X, V ∗
H(x) ≤ V ∗

H−1(x).

Proof: The proof is by induction on H. For H = 1, since V ∗
1 = T (V ∗

0 ), we have V ∗
1 (x) ≤ V ∗

0 (x)

for all x ∈ X from the assumption.

Assuming that the assertion is true for H = 1, ..., k, we prove that it holds for H = k + 1. For

all x ∈ X,

V ∗
k+1(x) = T (V ∗

k )(x)

= T (T (V ∗
k−1))(x)

≤ T (V ∗
k−1)(x) from the monotonicity of T and the assumption

= V ∗
k (x),

which proves the claim.

We remark that one such V ∗
0 can be simply given by V ∗

0 (x) = Cmax/(1 − γ) for all x ∈ X.

Theorem 3.2 Suppose V ∗
0 is selected such that for all x ∈ X, T (V ∗

0 )(x) ≤ V ∗
0 (x). Then, for all

x ∈ X,

0 ≤ V∞(π∗H , φ
∗)(x)− V ∗

∞(x) ≤ γH

1− γ
· 2Cmax

Proof: The lower bound is trivially true so that we prove the upper bound case.

Tπ∗H ,φ∗(V ∗
H)(x) = Cx(π∗H(x), φ∗(x)) + γ

∑
y∈X

Pxy(π∗H(x), φ∗(x))V ∗
H (y)

≤ Cx(π∗H(x), φ∗(x)) + γ
∑
y∈X

Pxy(π∗H(x), φ∗(x))V ∗
H−1(y) by Lemma 3.2

≤ sup
f∈F (x)


Cx(π∗H(x), f) + γ

∑
y∈X

Pxy(π∗H(x), f)V ∗
H−1(y)




= Cx(π∗H(x), φ∗H (x)) + γ
∑
y∈X

Pxy(π∗H(x), φ∗H(x))V ∗
H−1(y) by definition of φ∗H

= Tπ∗H ,φ∗H (V ∗
H−1)(x) = T (V ∗

H−1)(x) = V ∗
H(x)
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Therefore, by Lemma 3.1, V∞(π∗H , φ
∗)(x) ≤ V ∗

H(x) for all x ∈ X. It follows that for all x ∈ X,

V∞(π∗H , φ
∗)(x)− V ∗

∞(x) ≤ V ∗
H(x)− V ∗

∞(x).

Observe that maxx |V ∗
n (x)| ≤ Cmax

1−γ for all n ≥ 0 under the assumption of V ∗
0 . Therefore, for

n = 0, 1, ...,

max
x
|V ∗
∞(x)− V ∗

n (x)| ≤ γn max
x
|V ∗
∞(x)− V ∗

0 (x)| ≤ 2Cmax

1− γ
· γn. (1)

Combining the two inequalities, we have the desired result.

As we expected, the error bound vanishes to zero as the size of the horizon increases to infinity

geometrically fast with a given discount factor.

Consider the following condition: there exists a function δ defined on X such that 0 <∑
x∈X δ(x) < 1 and Pxy(f, g) ≥ δ(y) for all x, y, g, f . It turns out that if the given Markov

game meets this condition, the error bounds in the above theorems can be improved by a fac-

tor (1 −∑x δ(x))
H as in the MDP case [23]. Let β = 1 −∑x δ(x). Now define two probability

distributions P ′ and ψ such that

ψ(x) =
1

1− β
δ(x), x ∈ X.

P ′xy(f, g) =
1
β

[Pxy(f, g)− (1− β)ψ(y)].

Then, we can define a transition probability P by

Pxy(f, g) = βP ′xy(f, g) + (1− β)ψ(y).

We further define the operator T ′ : B(X) → B(X) as in T except that we use P ′ instead of P .

Then, for any function v ∈ B(X), the T and T ′ operators are related by

T (v)(x) = T ′(v)(x) + γ(1− β)ψ(v), x ∈ X.

where ψ(v) =
∑

x ψ(x)v(x).

Let {V ′
n} be the sequence of value iteration functions with respect to T ′, V ′

n := T ′(V ′
n−1) where

n = 1, 2, ... and set V ∗
0 (x) = V ′

0(x) = Cmax/(1− γ) for all x ∈ X. By induction, we can show that

V ∗
n (x) = V ′

n(x) + Cn, x ∈ X. (2)

where Cn is the constant given by

Cn = γ(1− β)
n−1∑
k=0

(γβ)kψ(V ∗
n−1−k)

= γ(1− β)
∞∑

k=0

(γβ)kψ(V ∗
n−1−k) (3)
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setting V ∗
k to the zero function for k < 0 if n ≥ 1 and C0 = 0. From this, we can conclude that

(c.f., Lemma 4.1 in [23])

V ∗
∞(x) = V ′

∞(x) + C(γ, β)ψ(V ∗
∞), x ∈ X,

where V ′∞ = limn→∞ T n(V ′
0) and C(γ, β) = γ(1 − β)/(1 − γβ). Observe that V ′∞ is the optimal

equilibrium value function for the underlying Markov game replaced with P ′ and discount factor

γβ. By the same arguments, we can show that for any π ∈ Π and φ ∈ Φ,

V∞(π, φ)(x) = V ′
∞(π, φ)(x) + C(γ, β)ψ(V∞(π, φ)), x ∈ X.

This immediately implies that

V ∗
∞(x)− V∞(π∗H , φ

∗
H)(x) = V ′

∞(x)− V ′
∞(π∗H , φ

∗
H)(x) + C(γ, β)ψ(V ∗

∞ − V∞(π∗H , φ
∗
H)).

Observe that a policy pair π ∈ Π and φ ∈ Φ such that T ′π,φ(V ′
H−1)(x) = T ′(V ′

H−1)(x) for all

x ∈ X prescribes the same randomized action choice as π∗H and φ∗H from the relationship given by

Equation (2). Now, by majorization of V ∗∞(x) − V∞(π∗H , φ
∗
H)(x) and from Theorem 3.1 with the

observation just made, it follows that

max
x

[V ∗
∞(x)−V∞(π∗H , φ

∗
H)(x)] ≤ (γβ)H(2− γβ)

(1− γβ)2
·2Cmax+C(γ, β)max

x
[V ∗
∞(x)−V∞(π∗H , φ

∗
H)(x)], x ∈ X.

We can also minorize V ∗∞(x)− V∞(π∗H , φ
∗
H)(x), from which we conclude that for all x ∈ X,

|V ∗
∞(x)− V∞(π∗H , φ

∗
H)(x)| ≤ [1− C(γ, β)]−1 · (γβ)H (2− γβ)

(1− γβ)2
· 2Cmax.

The upper bound on Theorem 3.2 can also be improved by a factor of βH with the same arguments.

3.2 Infinite horizon average cost

The receding horizon control is defined as follows. Given a finite horizon H ≥ 1, we define the

receding H-horizon control as a policy π∗H ∈ Π for the minimizer and a policy φ∗H ∈ Φ for the

maximizer such that T̄π∗H ,φ∗H (V̄ ∗
H−1)(x) = T̄ (V̄ ∗

H−1)(x) for all x ∈ X. We now present the perfor-

mance error of the receding horizon control in terms of the infinite horizon average cost comparing

with the equilibrium value under our assumptions on Markov games. The analysis primarily builds

on the work by Van der Wal [46]. We begin with a modified version of Van der Wal’s Corollary

13.2 in page 230 in [46] within our context. For a function v ∈ B(X), let span semi-norm of v be

sp(v) = maxx v(x)−minx v(x).

Theorem 3.3 Assume that Assumption 2.1 holds. For any V ∈ B(X), consider two policies π ∈ Π

and φ ∈ Φ such that T̄π,φ(V )(x) = T̄ (V )(x) for all x ∈ X. Then, for any π′ ∈ Π and φ′ ∈ Φ,

J∞(π, φ′) ≤ J∗∞ + sp(T (V )− V )

J∞(π′, φ) ≥ J∗∞ − sp(T (V )− V )



Markov games: receding horizon approach 13

From now on, we will set |X| = s (we naturally assume that s ≥ 1). Under the aperiodicity

assumption (the second part in Assumption 2.1), there exists a constant η, with 0 ≤ η < 1, such

that the following scrambling condition holds: for any π, π′ ∈ Π and any φ, φ′ ∈ Φ and for all

x, y ∈ X, ∑
z∈X

min{Ps−1
x,π,φ(z),Ps−1

y,π′,φ′(z)} ≥ 1− η,

where Ps−1
x,π,φ(y) denotes the probability that the initial state x will reach the state z in s− 1 time

steps under the policies π and φ. We will refer to η as an ergodicity coefficient.

Lemma 3.3 Assume that Assumption 2.1 holds. For n = 0, 1, ..., sp(V̄ ∗
n+1 − V̄ ∗

n ) ≤ 2η
n

s−1Cmax

Proof: Van der Wal showed that (see page 235 in [46]) sp(V̄ ∗
n+s − V̄ ∗

n+s−1) ≤ η · sp(V̄ ∗
n+1 − V̄ ∗

n ),

n = 0, 1, ..., which implies that

sp(V̄ ∗
n+1 − V̄ ∗

n ) ≤ η
n

s−1 sp(V̄ ∗
1 − V̄ ∗

0 ) for n = 0, 1, ...

Since sp(V̄ ∗
1 − V̄ ∗

0 ) ≤ 2Cmax with V̄ ∗
0 = 0, we have the desired result.

The theorem and the lemma above yield immediately the following result.

Theorem 3.4 Assume that Assumption 2.1 holds. Consider the receding H-horizon control π∗H ∈
Π for the minimizer and φ∗H ∈ Φ for the maximizer such that T̄π∗H ,φ∗H (V̄ ∗

H−1)(x) = T̄ (V̄ ∗
H−1)(x) for

all x ∈ X. Then,

|J∞(π∗H , φ
∗
H)− J∗∞| ≤ 2η

H−1
s−1 Cmax

We can see again that the receding horizon control for the average cost case also gives a good

approximation for the infinite horizon equilibrium policy for each player and the value of the game

by the policies approaches to the equilibrium performance for the infinite horizon average cost

geometrically in the ergodicity coefficient η. Furthermore, by letting 2η
H−1
s−1 Cmax = ε, we can

obtain the necessary value of the planning horizon which guarantees that the performance of the

receding horizon control will be within ε from the equilibrium value.

An error bound when the maximizer’s play is the true worst cast scenario φ∗ is also obtained

directly from Theorem 3.3.

Theorem 3.5 Assume that Assumption 2.1 holds. Consider the receding H-horizon control, π∗H ∈
Π for the minimizer such that T̄π∗H (V̄ ∗

H−1)(x) = T̄ (V̄ ∗
H−1)(x) for all x ∈ X. Then,

0 ≤ J∞(π∗H , φ
∗)− J∗∞ ≤ 2η

H−1
s−1 Cmax
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The error bounds we presented above vanish geometrically to zero as the size of the horizon

increases to infinity. However, it depends on the size of the state space. Therefore, if s is a huge

number, the error bound will be large with relatively small H. We now add a new condition to

the transition probability matrix so that we can eliminate the dependence on the size of the state

space.

Assumption 3.1 There exists a nonnegative function µ ∈ B(X) such that for some constant α,

with 0 ≤ α < 1, ∑
y∈X

Pxy(π(y), φ(y))µ(y) ≤ αµ(x)

for all x ∈ X, π ∈ Φ, and φ ∈ Φ.

We will refer to this assumption as the µ-recurrent condition [17].

We define the µ-norm of a function v ∈ B(X), ‖v‖µ given by

‖v‖µ = inf{c ∈ R| |v(x)| ≤ cµ(x),∀x ∈ X}.

It is well-known that under the recurrent condition, T̄ is a contraction mapping with respect to

µ-norm. That is, for any v,w ∈ B(X),

‖T̄ (v)− T̄ (w)‖µ ≤ α‖v − w‖µ.

Furthermore, it can then be easily proven (see, e.g., page 199 in [46]) that for any x ∈ X and for

any v,w ∈ B(X),

−αµ(x)‖v − w‖µ ≤ T̄ (v)(x) − T̄ (w)(x) ≤ αµ(x)‖v − w‖µ.

It follows that for n = 1, 2, ...,

sp(V̄ ∗
n+1 − V̄ ∗

n ) ≤ 2αmax
x

µ(x)‖V̄ ∗
n − V̄ ∗

n−1‖µ ≤ 2αn max
x

µ(x)‖V̄ ∗
1 − V̄ ∗

0 ‖µ = 2αn max
x

µ(x)‖V̄ ∗
1 ‖µ.

Because ‖V̄ ∗
1 ‖µ ≤ Cmax

1−α (see, e.g., page 199 in [46]), we have the following immediate result with

µ-recurrent condition.

Proposition 3.1 Assume that Assumptions 2.1 and 3.1 hold. Consider the receding H-horizon

control, π∗H ∈ Π for the minimizer and φ∗H ∈ Φ for the maximizer such that T̄π∗H ,φ∗H (V̄ ∗
H−1)(x) =

T̄ (V̄ ∗
H−1)(x) for all x ∈ X. Then under the µ-recurrent condition,

|J∞(π∗H , φ
∗
H)− J∗∞| ≤ αH−1

1 − α
· 2Cmax max

x
µ(x)

0 ≤ J∞(π∗H , φ
∗)− J∗∞ ≤ αH−1

1 − α
· 2Cmax max

x
µ(x).
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Therefore, the above theorem establishes the geometric convergence of the receding horizon

control independently of the state space size. To apply the receding horizon control, we need to

know the exact value of the finite horizon subgames. However, in practice, getting the true (H−1)-

horizon equilibrium value, in order for the minimizer to get the receding H-horizon control policy, is

also troublesome if the state-space size is huge. Motivated by this, we now analyze the approximate

receding horizon control.

3.3 Analysis of approximate receding horizon control

3.3.1 Infinite horizon discounted cost

We start with lemmas to state our main result for the approximate receding horizon control.

Lemma 3.4 For all x ∈ X and n = 0, 1, ...,

|V ∗
n+1(x)− V ∗

n (x)| ≤ γn

1− γ
· 2Cmax

Proof: This is directly obtained from the contraction mapping property.

The theorem below states an error bound from the equilibrium value of the game when both

the minimizer and the maximizer play the receding horizon control based on the same approximate

value, i.e., correlated equilibrium policies.

Theorem 3.6 Given V ∈ B(X) such that for some n ≥ 0, |V ∗
n (x) − V (x)| ≤ ε for all x in X,

consider a policy π for the minimizer and φ for the maximizer such that for all x ∈ X, Tπ,φ(V )(x) =

T (V )(x). Then, for all x ∈ X,

|V ∗
∞(x)− V∞(π, φ)(x)| ≤ γn+1(2− γ)

(1− γ)2
· 2Cmax +

2γε
1− γ

Proof: From the contraction mapping property of the T operator, for all x in X,

|T (V ∗
n )(x)− T (V )(x)| ≤ γ ·max

x
|V ∗

n (x)− V (x)| ≤ γε (4)

and from T (V ∗∞) = V ∗∞ and a successive application of the contraction property we have

max
x
|V ∗
∞(x)− V ∗

n+1(x)| ≤ γn+1 max
x
|V ∗
∞(x)− V ∗

0 (x)| ≤ 2Cmax

1− γ
· γn+1. (5)

Therefore, from Equation (4) and (5) and V ∗
n+1 = T (V ∗

n ) by definition, for all x ∈ X,

|V ∗
∞(x)− T (V )(x)| ≤ |V ∗

∞(x)− T (V ∗
n )(x)|+ |T (V ∗

n )(x)− T (V )(x)|
≤ 2Cmax

1− γ
· γn+1 + γε. (6)
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Below we show that |T (V )(x)−V∞(π, φ)(x)| ≤ γε(1+γ)
1−γ + 2Cmaxγn+1

(1−γ)2
for all x ∈ X. It then follows

that from Equation (6), for all x ∈ X,

|V ∗
∞(x)− V∞(π, φ)(x)| ≤ |V ∗

∞(x)− T (V )(x)|+ |T (V )(x)− V∞(π, φ)(x)|
≤ 2Cmax

1− γ
· γn+1 + γε+

γε(1 + γ)
1− γ

+
2Cmaxγ

n+1

(1− γ)2

=
γn+1(2− γ)

(1− γ)2
· 2Cmax +

2γε
1− γ

,

which gives the desired result.

From Lemma 3.4 and Equation (4), we have that for all x ∈ X, by letting w = γn

1−γ · 2Cmax,

V (x) ≤ V ∗
n (x) + ε ≤ V ∗

n+1(x) + ε+ w ≤ T (V )(x) + γε+ ε+ w. (7)

Then for all x ∈ X,

T (V )(x) = Tπ,φ(V )(x) = Cx(π(x), φ(x)) + γ
∑
y∈X

Pxy(π(x), φ(x))V (y) by definitions of π and φ and T

≤ Cx(π(x), φ(x)) + γ
∑
y∈X

Pxy(π(x), φ(x))[T (V )(y) + γε+ ε+ w] by Equation (7)

= Cx(π(x), φ(x)) + γ
∑
y∈X

Pxy(π(x), φ(x))T (V )(y) + γε(1 + γ) + γw

= Cx(π(x), φ(x)) + γ
∑
y∈X

Pxy(π(x), φ(x))

(
Cy(π(y), φ(y)) + γ

∑
z∈X

Pyz(π(y), φ(y))V (z)

)

+γε(1 + γ) + γw

= Cx(π(x), φ(x)) + γ
∑
y∈X

Pxy(π(x), φ(x))Cy(π(y), φ(y))

+γ2
∑
y∈X

∑
z∈X

Pxy(π(x), φ(x))Pyz(π(y), φ(y))V (z) + γε(1 + γ) + γw

≤ Cx(π(x), φ(x)) + γ
∑
y∈X

Pxy(π(x), φ(x))Cy(π(y), φ(y))

+γ2
∑
y∈X

∑
z∈X

Pxy(π(x), φ(x))Pyz(π(y), φ(y))T (V )(z)

+γ2ε(1 + γ) + γε(1 + γ) + (γ2w + γw)

Keep iterating (under the sum sign) this way, we have that for all k = 0, 1, ..., and x ∈ X,

T (V )(x) ≤ E

[
k∑

t=0

γtCxt(π(xt), φ(xt))|x0 = x

]
+ γk+1E[T (V )(xk+1)|x0 = x]

+γε(1 + γ) + · · · + γk+1ε(1 + γ) + (γw + · · ·+ γk+1w), (8)

where xt is the random variable representing the state at time t under π and φ. Since T (V ) is

bounded, the second term on the r.h.s. of Equation (8) converges to zero as k → ∞ and the
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first term becomes V∞(π, φ)(x). Therefore it follows that T (V )(x) − V∞(π, φ)(x) ≤ γε(1+γ)
1−γ + γw

1−γ .

Therefore, T (V )(x)− V∞(π, φ)(x) ≤ γε(1+γ)
1−γ + 2Cmaxγn+1

(1−γ)2 for all x ∈ X.

Similarly, we can show that T (V )(x) − V∞(π, φ)(x) ≥ −γε(1+γ)
1−γ − 2Cmaxγn+1

(1−γ)2
for all x ∈ X by

the observation that from the assumption and Equation (4), we have that for all x ∈ X,

V (x) ≥ V ∗
n (x)− ε ≥ V ∗

n+1(x)− ε− w ≥ T (V )(x) − γε− ε− w.

From the approximate receding horizon control framework, given an approximate function V , the

minimizer will play the policy π such that Tπ,φ = T (V ) at each x ∈ X. That is, he will assume

that the maximizer will play the correlated equilibrium policy with respect to V . We now present

the game of value when the maximizer actually plays the worst-case scenario.

Theorem 3.7 Suppose V ∗
0 is selected such that for all x ∈ X, T (V ∗

0 )(x) ≤ V ∗
0 (x). Given V ∈ B(X)

such that for some n ≥ 0, |V ∗
n (x)− V (x)| ≤ ε for all x in X, consider a policy π for the minimizer

such that for all x ∈ X, Tπ(V )(x) = T (V )(x). Then, for all x ∈ X,

0 ≤ V∞(π, φ∗)(x)− V ∗
∞(x) ≤ γn+1

1− γ
· 2Cmax +

2γε
1− γ

Before we provide a proof of this theorem, we mention here that setting ε = 0 with n = H − 1

gives exactly the bound of Theorem 3.2. Even though we could have obtained the result for

Theorem 3.2 by setting ε = 0 with n = H − 1 here, we wanted to show that there is an alternate

but simpler proof than the proof below.

Proof: The lower bound is trivially true so we prove the upper bound. The proof technique is

quite similar to the proof of the previous theorem.

For all x ∈ X, V∞(π, φ∗)(x) − V ∗∞(x) = V∞(π, φ∗)(x)− T (V )(x) + T (V )(x)− V ∗∞(x). We have

that T (V )(x)−V ∗∞(x) ≤ γε+ γn+12Cmax

1−γ (see the proof of the previous theorem). It remains to show

that V∞(π, φ∗)− T (V )(x) ≤ γε(1+γ)
1−γ .

Now, for all x ∈ X, −γε+ T (V )(x) ≤ V ∗
n+1(x) ≤ V ∗

n (x) ≤ V (x) + ε, where the first inequality

is from Equation (4) and the second inequality is from Lemma 3.2 and the third inequality is from

the assumption. It follows that

T (V )(x) = Tπ(V )(x) = sup
f∈F (x)


Cx(π(x), f) + γ

∑
y∈X

Pxy(π(x), f)V (y)




≥ Cx(π(x), φ∗(x)) + γ
∑
y∈X

Pxy(π(x), φ∗(x))V (y)

≥ Cx(π(x), φ∗(x)) + γ
∑
y∈X

Pxy(π(x), φ∗(x))[T (V )(y)− ε(1 + γ)]



Markov games: receding horizon approach 18

Keep iterating (under the sum sign) this way, we have that for all k = 0, 1, ..., and x ∈ X,

T (V )(x) ≥ E

[
k∑

t=0

γtCxt(π(xt), φ∗(xt))|x0 = x

]
+ γk+1E[T (V )(xk+1)|x0 = x]

−[γε(1 + γ) + · · ·+ γk+1ε(1 + γ)], (9)

where xt is the random variable representing the state at time t under π and φ∗. Since T (V ) is

bounded, the second term on the r.h.s. of Equation (9) converges to zero as k → ∞ and the first

term becomes V∞(π, φ)(x). Therefore it follows that T (V )(x) − V (π, φ∗)(x) ≥ −γε(1+γ)
1−γ .

As we have studied in subsection 3.1, if there exists a function δ defined on X such that

0 <
∑

x∈X δ(x) < 1 and Pxy(f, g) ≥ δ(y) for all x, y, g, f , the error bounds above can be improved.

Let β = 1−∑x δ(x) again. We only present the upper bound case of Theorem 3.6 as an example.

With the same arguments given in subsection 3.1,

max
x

[V ∗
∞(x)− V∞(π, φ)(x)] ≤ [1− C(γ, β)]−1 max

x
[V ′
∞(x)− V ′

∞(π, φ)(x)].

We have

max
x

[V ′
∞(x)− V ′

∞(π, φ)(x)] ≤ (γβ)n+1(2− γβ)
(1− γβ)2

· 2Cmax +
2γβε′

1− γβ

if V (x)− V ′
n(x) ≤ ε′. But ε′ = ε+ Cn where Cn is given in Equation (3).

3.3.2 Infinite horizon average cost

Theorem 3.8 Assume that Assumption 2.1 holds. Given V ∈ B(X) such that for some n ≥ 0,

|V̄ ∗
n (x)− V (x)| ≤ ε for all x in X, consider a policy π for the minimizer and φ for the maximizer

such that for all x ∈ X, T̄π,φ(V )(x) = T̄ (V )(x). Then, for all x ∈ X,

|J∗∞(π, φ) − J∗∞| ≤ 2η
n

s−1Cmax + 4ε.

0 ≤ J∗∞(π, φ∗)− J∗∞ ≤ 2η
n

s−1Cmax + 4ε.

Proof: From the assumption, −ε ≤ V̄ ∗
n (x) − V (x) ≤ ε for all x ∈ X. Applying the T̄ -operator

to each side and using the monotonicity property, we have −ε ≤ T̄ (V ∗
n )(x) − T̄ (V )(x) ≤ ε for all

x ∈ X. Therefore we have that

sp(T̄ (V )− V ) ≤ sp(V̄ ∗
n+1 − V̄ ∗

n ) + 4ε.

Applying Theorem 3.3, we have the result. The error bound on the value of the game when the

maximizer actually plays the worst-case scenario is also directly obtained from Theorem 3.3.

We remark that we can add the µ-recurrent condition (Assumption 3.1) to this case also so that

we can eliminate the dependence on the state space size as we did previously.
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4 Examples of Approximate Receding Horizon Control

In this section, we introduce three approaches as examples of approximate receding horizon control

for the Markov games. These are heuristics for the minimizer who seeks to optimize his performance

under the guess of the worst-case scenario from the opponent’s play. The first two approaches (to

the minimizer) aim at improving a given heuristic policy (or a set of multiple heuristic policies)

that is available to the minimizer, based on the policy improvement arguments. The final approach

is motivated by hindsight optimization proposed in [13, 16]. By this approach, at each state, the

minimizer evaluates his candidate randomized actions based on the analysis of the expected optimal

hindsight performance over a finite horizon under the guess that the maximizer plays the worst-case

fixed policy chosen by the minimizer.

4.1 Rollout algorithm

Our discussion in this subsection will focus on the discounted case first and then consider the

average case. To the minimizer, obtaining an equilibrium policy for him is often quite difficult

due to the curse of dimensionality. One approach to take when a heuristic policy is available to

the minimizer is to assume that the maximizer has chosen a fixed policy φ ∈ Φ to play the given

Markov game and then to try to improve the heuristic policy of the minimizer. Because it is also

difficult for the minimizer to get the worst case policy (the equilibrium policy for the maximizer),

the minimizer will need to choose a heuristic worst case policy for the maximizer. For some cases,

we can actually get φ∗ (see, e.g., [1] and the references therein). If we fix the maximizer’s policy,

the resulting game becomes a Markov decision process to the minimizer. It is well-known from

the policy improvement principle that given a policy π, if we define a new policy πro such that

Tπro,φ(V∞(π, φ))(x) = Tφ(V∞(π, φ))(x) for all x ∈ X, the new policy πro improves the policy π in

terms of the infinite horizon discounted cost. That is, V∞(πro, φ) ≤ V∞(π, φ). Because this holds

for arbitrary φ ∈ Φ, πro dominates π.

Several works for MDP problems (with their related cost function) in this respect have reported

successful results. For example, Bertsekas and Castanon consider stochastic scheduling problems [9],

Secomandi [43] studied a vehicle routing problem, Ott and Krishnan [37] and Kolarov and Hui [30]

studied network routing problems, Bhulai and Koole [11] consider a multi-server queueing problem,

and Koole and Nain [32] consider a two-class single-server queueing model under a preemptive

priority rule. In particular, [11] and [32] obtain explicit expressions for the value function of a fixed

threshold policy, which plays the role of a heuristic base policy, and showed numerically that the

rollout of the policy behaves almost optimally. Chang et al. [14] also empirically showed the rollout

of a fixed threshold policy (Droptail) works well for a buffer management problem. Koole [31] also

derived the deviation matrix of the M/M/1/∞ and M/M/1/N queue, which is used for computing

the bias vector for a particular choice of cost function and a certain base policy, from which the
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rollout policy of the base policy is generated. Note that in queueing systems viewed as Markov

games, we can consider a worst-case arrival process and then analyze the value function of a certain

fixed policy with the worst-case arrival process, from which we generate a rollout policy for the

minimizer.

As a receding horizon approach for this improvement scheme, we replace V∞(π, φ) by the

value of the game when the policies π and φ are followed over a finite horizon. Formally,

we define the H-horizon rollout policy πro,H with a base policy π to be a policy πro,H that

satisfies Tπro,H ,φ(VH−1(π, φ))(x) = Tφ(VH−1(π, φ))(x) for all x ∈ X where VH−1(π, φ) :=

E{∑H−2
t=0 γtCxt(π(xt), φ(xt))|x0 = x}.

We present the result regarding the H-horizon rollout policy adapted from [13] and provide the

proof for completeness. We first begin with a lemma similar to Lemma 3.2.

Lemma 4.1 Suppose V0(π, φ) is selected such that for all x ∈ X, Tπ,φ(V0(π, φ))(x) ≤ V0(π, φ)(x).

Then, for H = 1, 2, ..., and for all x ∈ X, VH(π, φ)(x) ≤ VH−1(π, φ)(x).

Proof: The statement can be proven by induction on H as in the proof of Lemma 3.2.

Proposition 4.1 Given a fixed policy φ ∈ Φ and a base policy π ∈ Π for the minimizer, suppose

V0(π, φ) is selected such that Tπ,φ(V0(π, φ))(x) ≤ V0(π, φ)(x) for all x ∈ X. For any ε > 0, if

H ≥ 1 + logγ
ε(1−γ)
Cmax

, then for all x ∈ X, V∞(πro,H , φ)(x) ≤ V∞(π, φ)(x) + ε.

Proof: Define ψ = VH−1(π, φ). By definition of the rollout policy,

Tπro,H ,φ(ψ)(x) = Tφ(ψ)(x) = Cx(πro,H(x), φ(x)) + γ
∑
y∈X

Pxy(πro,H(x), φ(x))ψ(y)

≤ Cx(π(x), φ(x)) + γ
∑
y∈X

Pxy(π(x), φ(x))ψ(y) = VH(π, φ)(x) ≤ ψ(x),

where the last inequality follows from Lemma 4.1. Therefore, for all x ∈ X, we have

V∞(πro,H , φ)(x) ≤ VH−1(π, φ)(x) by Lemma 3.1. Now we can write for all x ∈ X, V∞(π, φ)(x) =

VH−1(π, φ)(x) + γH−1E[V∞(π, φ)(xH−1)|x0 = x]. We know that minx[V∞(π, φ)(x)] ≥ −Cmax
1−γ . This

implies that V∞(πro,H , φ)(x) ≤ V∞(π, φ)(x)+ Cmax
1−γ ·γH−1. Letting Cmax

1−γ ·γH−1 ≤ ε yields the desired

result.

We note again that the minimizer is assuming the maximizer’s play. If the minimizer’s guess

on the worst-cast scenario is good in the sense that maxx |VH−1(π, φ)(x) − V ∗
H−1(x)| ≤ ε with a

relative small value, the resulting performance will be bounded by Theorem 3.7 from the optimal

equilibrium performance.

The average case is similar to the discounted case except that we define the rollout pol-

icy with respect to “T̄”-operators — the rollout policy is defined as a policy such that
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T̄πro,H ,φ(V̄H−1(π, φ))(x) = T̄φ(V̄H−1(π, φ))(x) for all x ∈ X where V̄H−1 is obtained with γ = 1

in VH−1 and we assume that V̄0(π, φ) is zero function. The principle behind this is also the policy

improvement scheme (see, e.g., [26]) under the assumptions we made for the average Markov games,

i.e., aperiodicity and irreducibility.

Proposition 4.2 Assume that Assumption 2.1 holds. Consider the H-horizon rollout policy πro,H

with a base policy π with respect to φ ∈ Φ. Then

J∞(πro,H , φ) ≤ J∞(π, φ) + 2η
H−1
s−1 Cmax.

To prove the above proposition, we start with a lemma, which can be proven by the invariance

property [23] of the stationary distribution of the underlying Markov chain (see, e.g., [15]). Note

that under our assumptions, there exists a stationary distribution over X under any policy pair.

Lemma 4.2 For any π ∈ Π and φ ∈ Φ, a stationary distribution P π,φ over X exists, and for all

n = 0, 1, ...,

J∞(π, φ) =
∑
y∈X

[V̄n+1(π, φ)(y) − V̄n(π, φ)(y)]P π,φ(y).

In particular, given V ∈ B(X) and φ ∈ Φ, if π is defined such that Tπ,φ(V ) = Tφ(V )(x) for all x ∈
X, then

J∞(π, φ) =
∑
y∈X

[Tφ(V )(y)− V (y)]P π,φ(y).

Lemma 4.3 For n = 0, 1, ...,, and any π ∈ Π and φ ∈ Φ,

max
x

[V̄n+1(π, φ)(x) − V̄n(π, φ)(x)] ≤ J∞(π, φ) + 2η
n

s−1Cmax

Proof: As in the statement of Lemma 3.3, we can show that for n = 0, 1, ..., sp(V̄n+1(π, φ) −
V̄n(π, φ)) ≤ 2η

n
s−1Cmax by the similar reasoning to that given in page 234–235 in [46]. By

Lemma 4.2,

min
x

[V̄n+1(π, φ)(x) − V̄n(π, φ)(x)] ≤ J∞(π, φ) ≤ max
x

[V̄n+1(π, φ)(x) − V̄n(π, φ)(x)].

It follows that maxx[V̄n+1(π, φ)(x)− V̄n(π, φ)(x)]−J∞(π, φ) ≤ sp(V̄n+1(π, φ)− V̄n(π, φ)). Therefore

the result follows.

We are now ready to prove the proposition above.
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Proof:

J∞(πro,H , φ) =
∑

x

[T̄φ(V̄H−1(π, φ))(x) − V̄H−1(π, φ)(x)]P πro,H ,φ(x) from Lemma 4.2

≤ max
x

(T̄φ(V̄H−1(π, φ))(x) − V̄H−1(π, φ)(x))

≤ max
x

(V̄H(π, φ)(x) − V̄H−1(π, φ)(x))

≤ J∞(π, φ) + 2η
H−1
s−1 Cmax from Lemma 4.3

Therefore, if H ≥ 1 + (s− 1) logη
ε

Cmax
, the rollout policy dominates the heuristic base policy by ε.

By adding the µ-recurrent condition, the similar result can be obtained.

4.2 Parallel rollout

When a good heuristic policy is available to the minimizer and a fixed worst-case policy can be

assumed for the maximizer, the performance of the rollout policy played by the minimizer will

be promising because it will improve the performance of the heuristic policy for the minimizer.

However, often getting a good heuristic policy to roll out is very difficult. This will be particularly

true for the case where for some trajectories of the states, a heuristic policy is good and for other

trajectories of the states, another heuristic policy is good, etc. As a simple example, for a multiclass

scheduling problem where the cost is a function of the delay and the (importance) weight of the

class, the performances of the static priority policy and the earliest deadline first policy depend on

the system trajectories (see [13] for a detailed discussion).

As a generalization of the rollout approach, we consider a finite set of multiple heuristic policies.

The minimizing player seeks to combine dynamically the given heuristic policies in the set to adapt

to the different trajectories of the system to improve the performance of all policies in the set under

the assumption that the maximizing player plays a fixed worst-case policy chosen by the minimizer.

As in the rollout algorithm discussion, we first study the discounted cost case and then the average

cost case.

As we mentioned before, if we fix the maximizer’s policy, the resulting game becomes a Markov

decision process to the minimizer. Consider a finite set Λ ⊂ Π. It has been shown in [13] that

if we define a new policy πpr such that Tπpr,φ(minπ∈Λ V∞(π, φ))(x) = Tφ(minπ∈Λ V∞(π, φ))(x)

for all x ∈ X, where min is defined componentwise on X, the new policy πpr improves all of

the policies in Λ in terms of the infinite horizon discounted cost (to see this, we simply show

that Tπpr ,φ(minπ∈Λ V∞(π, φ))(x) ≤ minπ∈Λ V∞(π, φ)(x) for all x ∈ X). That is, for all x ∈ X,

V∞(πpr, φ)(x) ≤ minπ∈Λ V∞(π, φ)(x). Therefore, πpr dominates any policy π ∈ Λ.
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As we have done for the rollout approach, we define formally the H-horizon parallel roll-

out policy πpr,H with a finite set Λ of base policies π ∈ Π to be a policy such that

Tπpr,H ,φ(minπ∈Λ VH−1(π, φ))(x) = Tφ(minπ∈Λ VH−1(π, φ))(x) for all x ∈ X.

We now give the main result regarding the H-horizon parallel rollout policy. It states that

the parallel rollout policy dominates any policy in Λ by a small error, which is determined by the

receding horizon size.

Proposition 4.3 Let Λ ⊂ Π be a nonempty finite set of stationary policies. Given a fixed policy

φ ∈ Φ for the maximizer, suppose for each π ∈ Λ, V0(π, φ) is selected such that for all x ∈ X,

Tπ,φ(V0(π, φ))(x) ≤ V0(π, φ)(x). For πpr,H defined on Λ and played by the minimizer, given any

ε > 0, if H ≥ 1 + logγ
ε(1−γ)
Cmax

, then for all x ∈ X, V∞(πpr,H , φ)(x) ≤ minπ∈Λ V∞(π, φ)(x) + ε.

Proof: The idea of the proof is similar to that of Proposition 4.1. We define ψ(x) =

minπ∈Λ VH−1(π, φ)(x) for all x ∈ X.

Tπpr,H ,φ(ψ)(x) = Tφ(ψ)(x) = Cx(πpr,H(x), φ(x)) + γ
∑
y∈X

Pxy(πpr,H(x), φ(x))ψ(y)

≤ Cx(π(x), φ(x)) + γ
∑
y∈X

Pxy(π(x), φ(x))VH−1(π, φ)(y)

for any π ∈ Λ from the definition of πpr,H

= VH(π, φ)(x) ≤ VH−1(π, φ)(x) by the given assumption and Lemma 3.2

It follows that Tπpr,H ,φ(ψ)(x) ≤ ψ(x) for all x ∈ X. Therefore, for all x ∈ X, we have

V∞(πpr,H , φ)(x) ≤ minπ∈Λ VH−1(π, φ)(x) by Lemma 3.1. We know that V∞(πpr,H , φ)(x) ≤
minπ∈Λ V∞(π, φ)(x)+ Cmax

1−γ ·γH−1 (c.f., Proposition 4.1). Letting Cmax
1−γ ·γH−1 ≤ ε yields the desired

result.

For the average cost case, the definition of the parallel rollout policy in the discounted case is

replaced with “T̄”-operator and V̄H−1. That is, the H-horizon parallel rollout policy πpr,H with a

finite set Λ of base policies π ∈ Π with respect to a policy φ ∈ Φ is defined as a policy such that

T̄πpr,H ,φ(minπ∈Λ V̄H−1(π, φ))(x) = T̄φ(minπ∈Λ V̄H−1(π, φ))(x) for all x ∈ X.

We first analyze the performance of the H-horizon parallel rollout policy compared with those

obtained by policies in Λ. For this purpose, for any π ∈ Π and φ ∈ Φ, define Jπ,φ
n (x) = V̄n(π,φ)(x)

n for

all x ∈ X and n = 1, 2, .... That is, this is the n-horizon approximation of the value of the game for

the average cost when the minimizer plays π and the maximizer plays φ. With similar arguments

as Platzman’s given in Section 3.3 in [41], we can show that Jπ,φ
n (x) converges, uniformly in x, as

O(n−1), to J∞(π, φ), n = 1, 2, ....

Theorem 4.1 Assume that Assumption 2.1 holds. Consider the H-horizon parallel rollout policy
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πro,H with a finite set Λ ⊂ Π with respect to a policy φ ∈ Φ. Then

J∞(πpr,H , φ) ≤
∑

x

J∞(arg min
π∈Λ

Jπ,φ
H−1(x), φ)P πpr,H ,φ(x) + 2η

H−1
s−1 Cmax.

Proof: We first observe that

T̄φ(min
π∈Λ

V̄H−1(π, φ))(x) = T̄πpr,H ,φ(min
π∈Λ

V̄H−1(π, φ))(x) by definition of πpr,H

= Cx(πpr,H(x), φ(x)) +
∑
y∈X

Pxy(πpr,H(x), φ(x))min
π∈Λ

V̄H−1(π, φ)(y)

≤ Cx(π(x), φ(x)) +
∑
y∈X

Pxy(π(x), φ(x))V̄H−1(π, φ)(y) for any π ∈ Λ

= V̄H(π, φ)(x).

Therefore, for all x ∈ X, T̄φ(minπ∈Λ V̄H−1(π, φ))(x) ≤ minπ∈Λ V̄H(π, φ)(x). Now,

J∞(πpr,H , φ) =
∑

x

[T̄φ(min
π∈Λ

V̄H−1(π, φ))(x) −min
π∈Λ

V̄H−1(π, φ)(x)]P πpr,H ,φ(x) by Lemma 4.2

≤
∑

x

[min
π∈Λ

V̄H(π, φ)(x) −min
π∈Λ

V̄H−1(π, φ)(x)]P πpr,H ,φ(x)

≤
∑

x

[V̄H(arg min
π∈Λ

Jπ,φ
H−1(x), φ)(x) − V̄H−1(arg min

π∈Λ
Jπ

H−1(x), φ)(x)]P πpr,H ,φ(x)

≤
∑

x

J∞(arg min
π∈Λ

Jπ,φ
H−1(x), φ)P πpr,H ,φ(x) + 2η

H−1
s−1 Cmax by Lemma 4.3 .

From the result given in the above theorem, we can now discuss the convergence rate of the H-

horizon parallel rollout policy. The second error term will approach zero geometrically in η as

H → ∞ and arg minπ∈Λ J
π,φ
H−1(x) will approach to the policy arg minπ∈Λ J

π,φ∞ in O(H−1). In the

limit, the parallel rollout policy will improve all policies in Λ. We remark that if for each π ∈ Λ,

V̄0(π, φ) is selected such that for all x ∈ X, T̄π,φ(V̄0(π, φ))(x) ≤ V̄0(π, φ)(x), then we can write the

result of the above theorem as follows:

J∞(πpr,H , φ) ≤ min
π∈Λ

J∞(π, φ) + 2η
H−1
s−1 Cmax.

We conclude the discussion of the (parallel) rollout with a remark on the minimizer’s guess of

the maximizer’s play. The above parallel rollout approach for the minimizer naturally gives a way

of guessing a worst-case scenario of the maximizer to the minimizer. Suppose the minimizer can

guess the best response from the maximizer when he plays a given heuristic policy π ∈ Λ. In this

case, the minimizer considers a finite set Ω ⊂ Φ of multiple heuristic policies for the maximizer

and defines a policy φmax(x) = arg maxφ∈Ω[minπ∈Λ V∞(π, φ)](x) for all x ∈ X, and uses the policy

φmax as the fixed policy for the maximizer.
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4.3 Hindsight optimization

The recently proposed approach called hindsight optimization [13] to solving Markov decision pro-

cesses can be also extended to solve Markov games if we fix a policy for the maximizer. Under the

assumption that the opponent (the maximizer) plays his best policy (chosen by the minimizer), the

hindsight optimizing minimizer plays the game at each state based on his analysis on the expected

optimal “retroactive” performance.

Given a policy φ ∈ Φ, define a function ρn,φ ∈ B(X) such that

ρn,φ(x) = E

{
min

g0,...,gn−1

n−1∑
t=0

γtCxt(gt, φ(xt)) + γnV ∗
0 (xn)|x0 = x

}
, gt ∈ G(xt) for all t (10)

and call this the “hindsight optimal” value of state x because it stands for the (expected) value

of taking (randomized) actions that the minimizer wishes to take if he encounters the particular

random trace of the game. For the average cost case, we simply set γ = 1 and refer to the value as

ρ̄n,φ(x).

Given a policy φ for the maximizer, we formally define the H-horizon hindsight optimization

policy as a policy πho,H such that for all x ∈ X, Tπho,H ,φ(ρH−1,φ)(x) = Tφ(ρH−1,φ)(x). The average

case is defined with “T̄ ”-operator with ρ̄H−1,φ. Because the minimization over the sequence of the

randomized actions is inside the expectation in Equation 10, this corresponds to solving the sample-

path problem, which is deterministic. The hindsight optimal value of state x is a lower bound to

the equilibrium value if we set φ = φ∗ because by Jensen’s inequality, ρn,φ(x) ≤ Vn(π̃, φ)(x) for any

π̃ ∈ Π̃ (for discounted case) and also ρ̄n,φ(x) ≤ V̄n(π̃, φ)(x) for any π̃ ∈ Π̃ (for average case).

It is quite difficult to give a bound on the hindsight optimal value without restrictive conditions

on the game. However, we believe that studying this issue is important. For this purpose, we

introduce an equivalent model description of Markov games. We can derive a function called the

next state function P̃ : X × G(X) × F (X) × [0, 1] → X from the transition function P . In other

words, given a policy pair π and φ and the current state x, a random number w selected uniformly

from [0,1] can be mapped to Pxy(π(x), φ(x)) for some y ∈ X. That is, xt+1 = P̃ (xt, at, wt) with

so-called random disturbance wt ∈ [0, 1]. The average payoff function C is also newly defined by C̃

such that Cx(π(x), φ(x)) = Ew(C̃x(π(x), φ(x), w)). See Bertsekas’ book of definitions on MDP [8]

or Ng’s deterministic (partially observable) MDP model for a related construction [36].

Now we define a function Q such that

Q(x0, π0, ..., πn−1, w0, ..., wn−1) =
n−1∑
t=0

γtC̃xt(πt(xt), φ(xt), wt) + γnV ∗
0 (xn)

and for convenience, we will abbreviate this to Q(x0, π̃, ~w) in an obvious notation, where ~w =<

w0, ..., wn−1 >∈ [0, 1]n and π̃ = {π0, ..., πn−1}. Then,

ρn,φ(x0) = E~w[min
π̃∈Π̃

Q(x0, π̃, ~w)]
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because the minimization over nonstationary policy is equivalent to the minimization over the

(randomized) action sequences given ~w.

Proposition 4.4 Suppose C̃x(g, f, w) is convex as a function of g and w jointly for every fixed

x ∈ X and f ∈ F (x) and V ∗
0 is convex as a function of x. Then, for all x ∈ X,

0 ≤ inf
π̃∈Π̃

Vn(π̃, φ)(x) − ρn,φ(x) ≤ Q(x, π̃0.5, ~0.5)− E~w[Q(x, π̃0.5, ~w)]

where ~0.5 is a vector of size n with every entry 0.5 and π̃0.5 solves inf π̃∈Π̃[Q(x, π̃, ~0.5)].

Proof: First, under our assumptions, the function Q is convex in the space of ~w and π̃ ([0, 1]n

and a cartesian product of polyhedral sets respectively), whose cartesian product space is a convex

set. Therefore, we can directly apply Avriel and Williams’ theorem on the Jensen’s inequality on

expected value of perfect information [22].

The same result holds for the average cost case (with γ = 1) and in particular if φ = φ∗, the

proposition above gives a bound between the hindsight optimal value and the n-horizon equilibrium

value.

We remark that the hindsight-optimization based approach appeals to the game-theoretic frame-

work so that this is different from the simulation-based approach used in the computer bridge game

player (GIB) in [20]. The approach taken there can be viewed as follows in the context of our dis-

cussion: many sample paths are drawn and for each sample path, the optimal solution with respect

to the sample path is analyzed after taking each deterministic candidate action, and one counts the

number of times that a particular deterministic action achieves the minimum cost sum, and takes

a deterministic action by voting. It would be interesting to compare two approaches in practical

applications.

5 Implementation and Research Directions

In this subsection, we briefly discuss how we can implement the (approximate) receding horizon

approaches we discussed before in practice and discuss some issues and directions for the future

research.

There is previous work done by Kearns et al. [28] that presents an algorithm that uses samples

to estimate V̄ ∗
n (the undiscounted finite horizon value of game) within a given error bound, which

can be easily adapted to the discounted setting. They analyzed the necessary number of sampling

to obtain a desired accuracy. The per-state running time of their algorithm is independent of

the state space size but exponential in the horizon size. Note that finite horizon value iteration’s

computation complexity depends on the state space size, even though it depends on the horizon

size linearly, so that applying it for a game with a very large state space is difficult.
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The exponential dependence on the horizon size can be alleviated by using the three heuristic

approaches we discussed. We can simply use a Monte-Carlo simulation to estimate the relevant

function values. For example, the minimizer who uses the H-horizon rollout policy simulates the

given heuristic base policy and the fixed policy for the maximizer using sampling over a finite

horizon H − 1, and the results of the simulation are used to “select” the (apparently) best current

randomized action at the current state. We assume that there is a selection function available

that extracts the randomized action that achieves the infimum/supremum. The randomized action

selected is the randomized action with the highest “utility” at the current state, as estimated by

sampling. Of course, we can use various sampling techniques (see, e.g., [33]), such as importance

sampling, to improve the estimation procedure. Therefore, the rollout/parallel rollout approach is

practically viable. On the other hand, the hindsight optimization approach needs to have a fast

hindsight problem solver.

Extending the receding horizon framework to the N -person (N ≥ 3) case and analyzing the

performance will be difficult, because no iteration algorithm based on a contraction mapping is

available to the authors’ knowledge. However, each player can heuristically use the rollout/parallel

rollout and the hindsight optimization for his policy choice.

We can also consider applying the three heuristics to nonzero-sum stochastic games. Analyzing

the structure of equilibrium policies, in this case, is often more difficult than for zero-sum games.

For zero-sum games, a standard technique, e.g., value iteration, can be used (see, e.g., [1, 3] and

references therein). However, for nonzero-sum games, we need to use a different non-standard

technique (see, e.g., [2]) to analyze the structure, which is quite cumbersome.

Finally, we can incorporate the idea of Neuro-Dynamic programming (NDP) [10] into the ap-

proximate receding horizon control framework. That is, the feature-based approximations in NDP

can be applied when we estimate the value of the underlying subgame, although how to extract

good features is a difficult problem in general.
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